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Light sources Fixed-target 
experiments

Colliders
SLAC - Linac Coherent Light Source

CERN - Large Hadron Collider

Fermilab  

Let’s talk about accelerators…

http://fast.fnal.gov/gallery.htmlInteresting Technical Challenges
• Complex/nonlinear dynamics
• Many small, compounding errors 
• Many parameters to monitor and control
• Interacting sub-systems
• On-demand changes in operational state
• Diagnostics sometimes limited or not put to 

full use in control (e.g. images)
• Time-varying/ non-stationary behavior

Uncertain, time-varying, nonlinear, many-parameter systems with continuous action spaces:  
à of great interest for research in control and machine learning
à lots of opportunity to both gain from and contribute to this area

Strong Incentives for Better Control
• Cost of running àTime/energy efficiency of control

• Cost of unintended down-time à Personnel cost, user time, bulk scientific output

• Achieving performance needed for science goals and other applications
• improving accelerator components and control both play a role
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Advanced Acceleration

Proton Therapy

Small Test Facilities Industrial / Medical

Large Scientific Facilities

IOTA

AWA



LCLS

1,062 experiments in 2016

~1023 papers since 2009

https://lcls.slac.stanford.edu

Experimenters come for a few days – a week

beam duration, x-ray wavelength etc. 
adjusted for each experiment



machine settings specific beam
characteristics

Beam exists in 6-D position-momentum phase space

Measure 2-D projections or reconstruct based on 
perturbations of upstream controls

Can have dozens-to-hundreds of controllable variables 
and hundreds-of-thousands to measure
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photon beam to 
7 experiment 
stations

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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~400 hours spent tuning per year

Changing configurations roughly 2-5 times per day

Average setup time is ~30 minutes
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J. Qiang et al, PRAB (2017)
A. Marinelli, IPAC’18

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)
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Approximate Annual Budget:  $145 million
Approximate hours of experiment delivery per year: 5000

About $30k per experiment hour to run!

400 hours hand-tuning in a year
$12 million value

~10 additional experiments
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Efficient tuning matters to maximize scientific output

Achieving fundamentally higher beam quality or new beam parameters can 
enable new science
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Rapid beam 
customization

Achieve new 
configurations + 

unprecedented beam 
parameters 

Fine control to 
maintain

stability within 
tolerances 



In a perfect world…

Use a fast, accurate model …

• find some knobs that give us the beam we want and apply those to the machine

• get info about unobserved parts of machine (online model / virtual diagnostic)

• do offline planning and control algorithm prototyping 

d



In reality things are much more difficult…

nonlinear 
effects / 
instabilities

fluctuations/noise
(e.g. laser spot)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”

computationally expensive simulations

ML can help with speed, accuracy, and uncertainty estimates for models



We rely heavily on operators for day-to-day control tasks . . .



We rely heavily on operators for day-to-day control tasks . . .

Model Learning
(physics understanding + 

empirical behavior)

Diagnostic Analysis
(e.g. beam images, time plots)

Heuristic Control 
Policies

(operator intuition)

Local Feedback + Optimization
(iterative fine-tuning)

Anomaly Detection 
+ Failure Prediction

…many analogous techniques in optimization, machine learning, 
computer vision, etc.  



laser
profile

automated control
+ optimization

digital twins + online modeling
(planning, model-based control, finding differences between sim/machine)

diagnostics
(reconstruct / analyze beam)

anomaly detection 
failure prediction

J. Duris

C. Emma

+ need uncertainty 
quantification for all

Several major areas for ML to play a role

incorporate 
physics

information

extract unexpected
relationships

(feed into control / design)



Accelerator Modeling



Wide scan of 6 settings in Bmad

Variable Min Max Nominal Unit

L1 Phase -40 -20 -25.1 deg

L2 Phase -50 0 -41.4 deg

L3 Phase -10 10 0 deg

L1 Voltage 50 110 100 percent

L2 Voltage 50 110 100 percent

L3 Voltage 50 110 100 percent

Trained neural network on simulation data

à ~ million times faster execution

11.4 GeV

13.09 GeV

10.49 GeV

Neural Network Model                 Simulation 

Simulated with CSR, wakefields, space charge 

NN predicts 25 scalar outputs (𝜎!,#,$ 𝜀!,# 𝜎!!,#!
𝜎% etc…) and phase space at the undulator entrance 

A. L. Edelen, et al., NeurIPS 2019
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11.4 GeV

13.09 GeV

10.49 GeV

Neural Network Model                 Simulation 
Trained neural network on simulation data

à ~ million times faster execution

A. L. Edelen, et al., NeurIPS 2019

NN predicts 25 scalar outputs (𝜎!,#,$ 𝜀!,# 𝜎!!,#!
𝜎% etc…) and phase space at the undulator entrance 



Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Laser Profile Electrons

Using image-based diagnostic input directly

Photocathode 
drive laser

L. Gupta

Test Set ImagePredicted Image Residual



ML Model

Genetic Algorithm 
(to optimize accelerator 

settings)

Physics 
Simulation

(a)  Run Optimizer on ML Model and Physics Simulation 
(b) Compare Resulting Pareto Fronts

Approach for Validating ML Model Performance Under Optimization

Genetic Algorithm 
(to optimize accelerator 

settings)
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Generate ML Model using Sparse Random Sample

slow-to-execute

Small random 
sample of 

inputs
Physics 

Simulation

Output beam 
parameters

Train ML 
Surrogate Model

fast-to-execute

ML Model

ML Model

Genetic Algorithm 
(to optimize accelerator 

settings)

Physics 
Simulation

(a)  Run Optimizer on ML Model and Physics Simulation 
(b) Compare Resulting Pareto Fronts

Approach for Validating ML Model Performance Under Optimization

Genetic Algorithm 
(to optimize accelerator 

settings)
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Compare Resulting Pareto Fronts
NSGA-II for optimization:

200 generations
~600 individuals

Input Variables

Solenoids

Gun 
Cavity Linac Cavity

Cathode

𝛆𝜙𝜖𝜖𝜀𝜀𝝙𝜎𝜎𝜎

K1 K2𝜙1
 

G1

𝜙2

G2

Beam 
Propagation

Output Beam Parameters

𝛆x,y,z

𝜎x,y,z

𝝙E

Test Case with Existing Data:  Argonne Wakefield Accelerator Injector

OPAL simulation (PIC) :
3D space charge 
3D field maps

500
random points 

for training

Run GA on ML Model and Physics Simulation

Can we trust these models under optimization?

A. Edelen, N. Neveu, et al., https://arxiv.org/abs/1903.07759



In terms of time-to-solution:

~6.4 mins on 8 cores to make 500-point training data

~10 minutes to train on a laptop

~2 minutes to do optimization on a laptop

Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Required ~260x fewer simulation 
evaluations overall and had 106 x faster 
execution in equivalent optimization task

Solution not contained in 
training set (orange dots)

Also useful for initial optimization with greater sample-efficiency
Can do iteratively for further improvement, or use bayes opt (later slide)



Finding Sources of Error Between Simulations and Measurement

Real accelerator can have many non-idealities and 
miscalibrations not included in physics simulations 

à Neural network model allows fast / automatic 
exploration of possible error sources

Here: calibration offset in solenoid strength found automatically with neural network model 
(trained first in simulation, then calibrated to machine)



Uncertainty Quantification

Need prediction uncertainties à want to trust predictions, have safe exploration of 
parameter space

Test shot within trained distribution  Out-of-distribution

O. Convery, PRAB, 
2021

Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

Sample Number (Time Ordered)

Neural network with 
quantile regression 
predicting FEL pulse 
energy at LCLS

unseen regionstest data

L. Gupta

Longitudinal phase space beam profiles

• BNN Predictions
• ASTRA Simulation

White area – values 
left out of training

A. Mishra

LCLS injector transverse distributions on out-of-training distribution shots,  
neural network ensemble

Bayesian 
neural network 
predicting 
scalar 
parameters for 
the LCLS-II 
injector 

https://github.com/lipigupta/FEL-
UQ/blob/main/notebooks/QR--
Interp-2.ipynb

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb


Example of prediction under large drift in inputs (and possibly hidden variables):

unseen region

Uncertainty estimate from neural network ensemble does not accurately cover the 
OOD prediction error, but it is relatively higher than for in-distribution data



ML-enhanced diagnostics

faster measurements and more information à better control 







Examples for longitudinal phase space:
mix of adaptively calibrated physics models and ML-based prediction…



Signals used in feedback control and experimental analysis are 
complicated (e.g. beam images, time series)

Can use ML to extract more useful information from these high-
dimensional signals

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)
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e- beam 

A. Solopova, IPAC’19
J. Qiang, et al., PRSTAB30, 054402, 2017

Prediction àAnalysis



X. Ren, A. Edelen, D. Ratner, et al., PRAB 2020

time à
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gy
 à

no lasing after lasing

e- beam

e- beam loses energy to photon beam

Can use e-beam images to predict unmeasured photon beam power profile
-Standard method is slow/iterative and doesn’t work well into saturation

CNN is faster / 
more accurate 
than standard 
reconstruction 

technique



Tuning/Optimization



moreless
assumed knowledge of machine

Model-Free 
Optimization

Observe performance 
change after a setting 

adjustment

à estimate direction 
toward improvement

Model-guided 
Optimization

Update a model  
during each search 

step

à use model to 
help select the next 

point

Global Modeling 
+ Feedforward 
Corrections

Make fast / accurate 
system model

à provide guess for 
good settings

à make predictions 
about machine

gradient descent
simplex

Bayesian optimization
Reinforcement learning

ML system models +
inverse models
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Control steps during optimization Measurements during optimization

A. Scheinker, PRAB, 2019
Model-free optimizers can help…

...but convergence can be very slow + can get stuck in local minima



Bayesian Optimization

Set up probabilistic model

à e.g. Gaussian Process

Iteratively refit model while 
sampling new points

Use model predictions and 
uncertainty to guide search for 
optimum while sampling

y 
(o

bj
ec

tiv
e)

x (variable)

Figs. courtesy Johannes 
Kirschner (ETH Zurich)
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Model-informed Bayesian optimization J. Duris et al., PRL, 2020

Goal: adjust focusing magnets to maximize x-ray pulse energy

magnets

à can design GP kernel based on expected physics

Magnet 1

M
ag

ne
t 

2

x-ray pulse energy

Including expected correlation improves ability to model the data with fewer samples
à faster optimization



Including expected correlation improves ability to model the data with fewer samples
à faster optimization

Model-informed Bayesian optimization J. Duris et al., PRL, 2020

à can design GP kernel based on expected physics

Magnet 1

M
ag

ne
t 

2

x-ray pulse energy

ML optimization

ML w/ correlations     

standard optimizer



A way to get the correlations:

Take the Hessian of a model at the 
expected optimum à use those 
correlations in the GP kernel

As long as qualitative behavior is 
correct in model, should result in 
faster convergence

Model-informed Bayesian 
optimization

Was demonstrated at SPEAR3 for minimizing the vertical emittance (beam loss rate)

à No measured data needed, just a simulation

A. Hanuka et al., NeurIPS 2019
A. Hanuka et al., arXiv:2009.03566 (accepted to PRAB)



Standard RBF Kernel

Kernel from Hessian 
of Surrogate Model

(trained on IMPACT-T 
sims)

Both start from randomly sampling within the bounds
“Baseline” is tuning solution that ops was using that day 

à Using simulation surrogate model to inform optimization allows rapid 
tuning to human-level quality without any previous data

Example for faster optimization of LCLS injector leveraging 
simulation-based surrogate model (no previous data)



Multi-objective Bayesian optimization
Use Bayesian optimization for serial online 
multi-objective optimization

More sample-efficient and fills out front 
efficiently than other methods

à Could be extremely useful for characterization 

Can enforce 
smooth 

exploration

(no wild changes 
in input settings)

R. Roussel, et al., PRAB (2021)
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.24.062801



•

Example at LCLS: 

- Two settings scanned  (L1S phase, BC2 peak current); 
trained neural network model to map longitudinal 
phase space to settings

- Compared optimization algorithm with/without warm 
start

What if we are far away from some target beam parameters and want to switch between configurations quickly?

à Use global model to give an initial guess at settings, then refine with local optimization (“warm start”)
•

Faster optimization with warm starts from global models

A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)
sim study w/ a THz FEL: A.  Edelen, et al., FEL’17



• Round to flat beam transforms are 
challenging to optimize

• Took measured scan data at Pegasus 
(UCLA) 

• Trained neural network  model to predict fits 
to beam image

• Tested online multi-objective optimization 
over model (3 quad settings) given present 
readings of other inputs 

x_rms

y_
rm

sNeural 
Network

Readings for other inputs
(at start of optimization only)

Flat Beam Quads (3)

x rms
y rms

pixel intensity
sigma xy

x,y centroids

Genetic 
Algorithm

Pareto front

Results are for 
one full day after 
last training data

Expert hand-tuning: 
10 – 20 minutes
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Pegasus beamline layout with selected distances

updated 1/18/2019 

quads used for flat beam screen location

Another way: run optimizer on learned online model



Can use neural network to provide first guess at solution, 
then fine tune with other methods…

E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes

Significant boost in convergence speed for other algorithms



laser
profile

automated control
+ optimization

digital twins + online modeling
(fast sims, autodiff sims, model calibration)

advanced diagnostics
(reconstruct / analyze beam)

anomaly detection 
failure prediction

incorporate 
physics

information

extract unexpected
relationships

(feed into control / design)

J. Duris

C. Emma

+ need UQ for all

Future: tying together and scaling these to 
higher dimension, more extreme beams



How to use all this together? Need dedicated investment in 
online compute and ML infrastructure



Example Prototype: Running 
Lume-IMPACT-T and Neural 
Network Model of LCLS 
Injector Online

LUME: light source unified modeling environment: https://www.lume.science/



ML Future Directions / Needs for Accelerator R&D

• Uncertainty quantification
- Detect when model may not be accurate (e.g. outside training range)
- Leverage for safe exploration of parameter space

• Active learning

- Retraining to account for drift or adapt during search
- Sampling strategies to efficiently explore large parameter space + generate training data (maximize information with the least samples)

• Efficient ways to handle high dimensional data:
- Images, 6D phase space
- More variables (full accelerator vs. small test cases)

• Physics-informed / constrained ML

- Improve robustness / generalization to unseen regions of parameter space
- Reduce need for additional data
- Extract physics from measured data

• Differentiable Simulators 
- Wide range of types of simulation codes for accelerators (analytic matrix transport codes, particle-in-cell) à relatively unexplored area

• Interpretability
- Important for ML-based tuning, identifying physic underpinning a prediction

• Many shared challenges with other SciML domains à accelerators are unique test beds for these kinds of problems 



Thanks for your attention!


